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Abstract

In the past, notions of embodiment have been applied to robotics mainly in the realm of very

simple robots, and supporting low-level mechanisms such as dynamics and navigation. In con-

trast, most human-like, interactive, and socially adept robotic systems turn away from embodi-

ment and use amodal, symbolic, and modular approaches to cognition and interaction. At the

same time, recent research in Embodied Cognition (EC) is spanning an increasing number of

complex cognitive processes, including language, nonverbal communication, learning, and social

behavior.

This article suggests adopting a modern EC approach for autonomous robots interacting with

humans. In particular, we present three core principles from EC that may be applicable to such

robots: (a) modal perceptual representation, (b) action ⁄ perception and action ⁄ cognition integration,

and (c) a simulation-based model of top-down perceptual biasing. We describe a computational

framework based on these principles, and its implementation on two physical robots. This could pro-

vide a new paradigm for embodied human–robot interaction based on recent psychological and neu-

rological findings.

Keywords: Embodied cognition; Robotics; Artificial intelligence; Perceptual symbols; Human–robot

interaction; Cognitive computational models; Anticipation

1. Introduction

Among the various applications of computer science, robots are tautologically embodied.

However, it seems that many of the computational models underlying intelligent robotic

platforms are, to a large extent, unaware of that fact. When embodiment does appear in

robotics research, it is usually applied to simple systems, tackling such issues as low-level

dynamics and navigation. In contrast, most of the research dealing with high-level

intelligent, autonomous, and interactive robotics is still representational: abstract symbol
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processing systems that view the robot’s ‘‘body,’’ its sensors and actuators, as proxies to

numerical manipulation at best, and as noisy nuisances to circumvent at worst.

At the same time, a growing body of research in psychology and neuroscience is mov-

ing away from abstract symbolic models of cognition, emphasizing instead embodied

aspects of intelligence (Wilson, 2002). According to this view, human perception and

action are not mere input and output channels to an abstract symbol processor or rule-

generating engine, but instead decision making, memory, perception, and language are

intertwined and grounded in our physical presence (Barsalou, 1999; Pecher & Zwaan,

2005; Wilson, 2001). Importantly, embodied principles are not limited to rudimentary

perceptual, physical, and memory tasks but apply to increasingly complex and high-level

cognitive processes, such as social cognition, communication, and the coordination of joint

activities (Barsalou, 2008; Barsalou, Niedenthal, Barbey, & Rupert, 2003; Sebanz &

Bekkering, 2006).

In this article, we suggest that core principles from recent EC research can and should be

transferred to a wider range of robotic systems. In particular, embodied robotic cognition

research could transcend simple robotic systems, navigation, and dynamics, and be applied

to autonomous interactive robots that act in meshed joint activities with humans.

The amodal and modular focus of autonomous robotics can be explained by its roots in

so-called good old-fashioned AI (GOFAI) and cybernetics. GOFAI is exclusively concerned

with abstract symbol processing and has had its most notable successes in logic, mathemat-

ics, game playing, data mining, and classification (for a review of the history of classical AI,

see Pfeifer and Bongard [2007]). When AI was beginning to tackle robotics, it stayed true to

this symbolic tradition, combining it with ideas from cybernetics, which drew a clear sepa-

ration between input (sensors), decision making (processors and control), and output

(motors and other actuators).

As a result, much of the last 50-year history of robotics adopted this modular view,

according to which sensory input is filtered into features, which are analyzed and classified

into abstract amodal symbols representing an external world state. The control, learning, or

decision-making processes use these states, with additional symbolic knowledge, to choose

one or more actions. Actions are then executed by actuators altering the external world, in

turn causing new sensory perception. Information thus flows in a unidirectional stream from

the world, to sensors, to decision making, to action, and back to the world. Each stage of

processing is clearly separated, and approached as a distinct problem, often providing for a

whole subfield of AI and robotics.

1.1. An embodied alternative

In a radical departure from this view, Brooks (1991) proposed an alternative ‘‘Intelli-

gence without Representation,’’ in which independent low-level behaviors (such as obstacle

avoidance, walking dynamics, and so forth) result in an overall intelligent creature that has

no symbolic representation of an external world state. He proposed looking to insects and

other simple organisms for inspiration, ‘‘growing’’ intelligence as an emergent property of

increasingly complex systems.
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Following Brooks, a number of embodiment-inspired subfields of robotics emerged. One

segment of robotics steered away from modeling human intelligence altogether and instead

focused on biomimetics, especially of insects (e.g., Miki & Shimoyama, 1999; Silva, Teneiro

Machado, & Jesus, 2008), snakes (e.g., Hirose & Mori, 2004), and other nonhuman organ-

isms. In parallel, walking dynamics (e.g., Collins, Ruina, Tedrake, & Wisse, 2005; for a

review, see Chiel, Ting, Ekeberg, & Hartmann, 2009)—and more recently—grasping mech-

anisms (e.g., Edsinger & Kemp, 2006) have been explored as embodied, nonsymbolic

subfields of robotics.

The ‘‘Artificial Life’’ subfield of AI also investigated a variety of complex behaviors

emerging from simple rules (for a review, see Langton, 1995), inspiring a different kind of

nonrepresentational approach to robot intelligence. One example is that of ‘‘swarm robot-

ics’’ (Şahin, 2005), in which a large number of independent robots behave collectively

through simple local interactions. Another is ‘‘modular robotics’’ (e.g., Zykov, Mytilinaios,

Desnoyer, & Lipson, 2007), where the overall behavior of a robot is independently

controlled within each of its physical subparts.

These lines of research unseated the exclusive status of symbol processing AI in

robotics. Still, such embodied interpretations were mostly demonstrated on either very

simple systems or dealt with the solution of specific mechanical and sensory dynamics

challenges.

Meanwhile, the fields of Personal Robotics and Sociable Robotics (Breazeal, 2002; Fong,

Nourbakhsh, & Dautenhahn, 2003) began to form, returning the focus to human-like and

human-interactive systems. Some researchers envisioned robots as teammates in human–

robot teams (Hinds, Roberts, & Jones, 2004; Hoffman & Breazeal, 2004), initiating new

models for artificial social behavior and interpersonal communication. However, many of

these new efforts toward interactive robotics returned to a more classical ‘‘good old-fash-

ioned’’ view of Intelligence, in part because they drew heavily on the linguistics- and

logics-based field of ‘‘Discourse Theory’’ to model human–robot interaction (e.g., Rickel,

Lesh, Rich, Sidner, & Gertner, 2002; Hoffman & Breazeal, 2004).

In neuroscience and psychology, however, an opposite trend developed: EC was found to

be applicable to an increasing number of more sophisticated cognitive tasks. Embodied

mechanisms were shown capable of modeling abstract thought, language, mathematical

reasoning, and learning, as well as social and moral decision making (Barsalou, 1999, 2008;

Chandler & Schwarz, 2009; Lee & Schwarz, 2010). And embodied representations could

also account for aspects of social interaction, communication, and coordination (Barsalou

et al., 2003; Sebanz & Bekkering, 2006).

1.2. Embodied cognition for autonomous interactive robots

These findings suggest a reevaluation of higher level artificial cognition, and of autono-

mous interactive robotics, in EC terms. Currently, many of the works in autonomous inter-

active robotics suffer from the drawbacks of abstract symbol systems, such as discreteness,

rigid structure, and slowness. At the same time, EC suggests new models and theories appli-

cable to social interaction. We therefore propose a renewed view of EC in the context of
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autonomous robots aimed for human interaction, especially where fluid activity with the

robot’s surroundings and human counterparts is desired.

Specifically, we believe that the idea of modal perceptual representation, the integration

of action, perception, and cognition, and a notion of simulation-based top-down perceptual

biasing could inform the design of such robots. To that effect, we present an implementation

of these three ideas in a novel computational framework, used in two physical robotic sys-

tems. The article concludes by suggesting additional ways in which ideas from EC could

apply to interactive robotics.

2. Three embodiment principles for autonomous interactive robots

In this section, we propose three EC principles that could be applicable to autonomous

interactive robots.

2.1. Modal perceptual representation

Traditional robotics research uses amodal theories of knowledge, which assert that infor-

mation is processed from perceptual stimuli into nonperceptual symbols, later used for

information retrieval, decision making, and action production. Recent findings in EC chal-

lenge this view, suggesting instead a perceptual model of cognition, in which concepts are

grounded in modal representations, utilizing some of the same mechanisms used during the

perceptual process (Barsalou, 1999; Kosslyn, 1995). This is supported by a range of

evidence, for example, perceptual neural activation when a subject is using a concept in a

nonperceptual manner (e.g., Martin, 2001; Kreiman, Koch, & Fried, 2000); visual priming

by reading a sentence that has an implied visual orientation (Stanfield & Zwaan, 2001);

memory recall impairment matching speech impediments (Locke & Kutz, 1975); and the

increased speed of comparing visually similar variations of a concept, as opposed to visually

distinct variations (Solomon & Barsalou, 2001).

The notion of perceptual representation can be translated to computational models of

cognition in a number of ways. Gray, Breazeal, and colleagues have presented simulation-

theoretic models for a robotic system inferring beliefs, intentions, and goals of a human peer

(Breazeal, Gray, & Berlin, 2009; Gray, Breazeal, Berlin, Brooks, & Lieberman, 2005). The

robot reuses the same perceptual systems that it uses to generate behavior, to simulate the

perceptual perspective, action intentions, and task goals of a human collaborator or adver-

sary. Human-subject studies using the system show the robot displaying comparable behav-

iors to humans in the same situation.

In this article, we propose another computational model of concepts, memory, and deci-

sion making that makes use of modal perceptual representations, in the spirit of Conver-

gence Zones (Damasio, 1989; Simmons & Barsalou, 2003). In the framework described in

Section 3, decision making happens in the same modal systems that process perception, by

biasing perceptual and sensory processing layers that trigger behavior. Learning, too, is

modeled by altering attributes and connections of modal perception-processing systems, and
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not by the creation of amodal symbolic rules and relations. Through a process of perceptual

simulation, the artificial agents’ world model is represented by a mixture of real-world and

simulated perceptions. This permits mechanisms akin to human priming and practice, and

serves as a basis for learning and conditioning.

2.2. Action ⁄ perception and action ⁄ cognition integration

In addition to a perception-based theory of cognition, there is an understanding that cog-

nitive processes are similarly interwoven with motor activity. Evidence in human develop-

mental psychology shows that motor and cognitive development are not disparate but highly

interdependent. For example, research shows that artificially enhancing 3-month-old infants’

grasping abilities equates some of their cognitive capabilities to the level of older, already

grasping1 infants (Sommerville, Woodward, & Needham, 2005). Adult behavior expresses

similar interdependence: Hand signals have been shown to be instrumental to lexical lookup

during language generation (Krauss, Chen, & Chawla, 1996), and an action ⁄ cognition rela-

tionship is supported by findings of redundancy in head movements and facial expression

during speech generation (Chovil, 1992; McClave, 2000). Wilson (2001) points to an iso-

morphic representation between perception and action, leading to mutual and often involun-

tary influence between the two.

In contrast, the role of action and motor execution in robotics has traditionally been

viewed as a passive ‘‘client’’ of a central decision-making process, and as such at the

receiving end of the data and control flow in robotic systems. Even in so-called Active

Perception frameworks (Aloimonos, 1993), the influence of action on perception is medi-

ated through the agent changing its surroundings or perspective on the world, and not by

internal processing pathways.

Instead, we suggest that action can affect perception and cognition in interactive robots in

the form of symmetrical action-perception activation networks. In such networks, percep-

tions exert an influence on higher level associations, leading to potential action selection,

but are also conversely biased through active motor activity. This close integration between

motor activity and perceptual processing could lead to more highly meshed activities

between robots and human collaborators, as we argue in Section 3.

2.3. Simulation-based top-down perceptual biasing

The two principles outlined above, as well as a large body of related experimental data,

give rise to the following insight: Perceptual processing is not a strictly bottom-up analysis

of raw available data, as it is often modeled in robotic and AI systems. Instead, simulations

of perceptual processes affect the acquisition of new perceptual data, motor knowledge is

used in sensory processing, and intentions, goals, and expectations all play a role in the abil-

ity to parse the world into meaningful objects. In other words, sensory-perceptual systems

are highly penetrable by cognitive and action processes.

Much experimental data support this hypothesis, suggesting not only that perception is

often a predictive activity but also that top-down simulation is a viable model for this
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predictive behavior. To give just a few examples: in visual perception, information is found

to travel both upstream and downstream, causing object priming to trigger a top-down

biasing of lower level mechanisms (Kosslyn, 1995). Similarly, visual lip reading affects the

perception of auditory syllables, indicating that the sound signal is not processed as raw

unknown data (Massaro & Cohen, 1983). High-level processing seems also to be involved

in the perception of human figures from point light displays, enabling subjects to identify

‘‘complex actions, social dispositions, gender, and sign language’’ from sparse visual infor-

mation (Thornton, Pinto, & Shiffrar, 1998). For a thorough review of related findings, see

Wilson and Knoblich (2005) and Barsalou (1999).

While the notion of top-down influences has been explored for some visual tasks in

computational systems (e.g., Bregler, 1997; Hamdan, Heitz, & Thoraval, 1999), there is

additional potential for using top-down processing in the context of autonomous robots

physically interacting with humans, where actions, concepts, and predictions could penetrate

lower level perceptual and sensory modules. We moreover believe that simulation-based

top-down biasing could specifically be key to more fluent coordination between humans and

robots working together in a socially structured interaction.

3. Implementation

We exemplify the principles laid out above in a computational framework implemented

on two different autonomous interactive robots. The core mechanism, akin to human ‘‘prim-

ing,’’ is based on the modeling of the human partner’s activity and the subsequent biasing

of perceptual pathways. This relies on two processes: (a) anticipation of the human actions

based on repetitive past events, and (b) modeling the resulting anticipatory expectation as

modal perceptual simulation, causing a top-down bias of perceptual processes.

To allow for this, concepts are modeled as specific patterns of modal activation and reside

within the perceptual streams that process sensory data. Actions are triggered bottom-up

through their activation originating in perceptual stimulation, and conversely, anticipated

concepts bias the perceptual pathway detecting the properties and features of that concept.

This leads to diminished reaction times for confirmatory sensory events, resulting in higher

fluency and efficiency in joint actions.

3.1. Modality streams and process nodes

We structure our system in the form of modality streams (Fig. 1) built of interconnected

process nodes. These nodes can correspond to raw sensory input (such as an image frame),

to a feature (such as the dominant color or orientation of a data point), to a property (such as

the speed of an object), or to a higher level concept describing a statistical congruency of

features and properties. This corresponds to the principle of modal concept representation

(Section 2.1).

Modality streams are connected to an action network consisting of action nodes, which

are activated in a similar manner as perceptual process nodes. An action node, in turn, leads

6 G. Hoffman ⁄ Topics in Cognitive Science (2012)



to the performance of a motor action. Importantly, activation flows in both directions, the

afferent—from the sensory system to concepts and actions—and the opposite, efferent,
direction. This is in line with the principle of perception ⁄ action integration (Section 2.2).

Each node (Fig. 2) contains an activation value, a, which represents the processing com-

ing in from the outside world. A separate simulated activation value r is also taken into

account in the node’s activation behavior and processing, and it results from top-down

processing (as proposed in Section 2.3). The combination of activation and simulation also

causes motor action triggers.

3.2. Priming

In humans, ‘‘priming’’ is the bias (often measured as a decrease in response time) toward

a sensory or memory event. Such priming can occur through cross-modal activation,

through previous activation, or from memory recall.

Fig. 3 exemplifies modal priming for an artificial agent in a simple example: An auditory

percept (e.g., the sound ‘‘Elmo’’) activates a visual memory of the Elmo figure (bottom),

Action

Perception

Sensory

Perception

Features

Properties

Concepts

Fig. 1. Schematic of a modality stream.
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which—using the same pathway utilized in visual perception—resolves into the dominant

color of the image (second frame from left). This color is then used as a bias affecting the

low-level visual buffer (third frame from left), shifting it toward detection of similarly col-

ored areas, eventually enabling the system to detect the Elmo puppet in the visual field more

readily.

In our architecture, the mechanism of artificial priming works as follows: If a certain

higher level node n is activated through priming, the lower level nodes that feed n are

partially activated through the simulation value r on the efferent pathway. As r is added to

the sensory-based activation a in the lower level nodes, this simulated top-down penetration

Activation 

Simulation 
 afferent efferent

Sensors

Concepts / Actions

weight weight
weight

weight weight

Fig. 2. A process node within a modality stream. Weighted activation travels both up from sensory events

to concepts and actions (the afferent pathway), and—through simulation—back downstream (the efferent

pathway).

Fig. 3. Top-down processing and cross-modal activation in a perception-based computational framework.
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inherently lowers the perceptual activation necessary for the activation of those lower level

nodes, decreasing the real-world sensory-based activation threshold for action triggering.

The result is reduced response time for anticipated sensory events, and increasingly auto-

matic motor behavior.

3.3. Sources of priming

What are the sources of perceptual simulation? We implemented two top-down subsys-

tems to support priming within the proposed perceptual node architecture.

3.3.1. Markov-chain Bayesian anticipatory simulation
The first is a Markov-chain Bayesian predictor, building a probabilistic map of node acti-

vation based on recurring activation sequences during practice. This system is in the spirit

of the anticipatory system described in Hoffman and Breazeal (2007). It triggers high-level

simulation, which—through efferent pathways—biases the activation of lower level percep-

tual nodes. For example, if a red stop light usually follows a yellow one on a traffic light,

then the activation of a yellow traffic light concept activates the red light concept (with a

delay), which in turn biases the activation of red feature detectors in the perceptual system,

making the robot more responsive to red objects.

If the subsequent real-world sensory data support these perceptual expectations (i.e., the

light actually turns red), the robot’s reaction times are shortened as described above. In the

case where the sensory data do not support the simulated perception, reaction time could be

longer and can even lead to a temporary erroneous action, which is then corrected by the

real-world sensory data.

3.3.2. Intermodal Hebbian reinforcing
A second mechanism of priming is that of Hebbian reinforcement on existing activation

connections. Node connections can be assigned to a connection reinforcement system,

which will dynamically change the weights between the nodes. This system works accord-

ing to the contingency principle introduced in Hebb (1949), reinforcing connections that

co-occur frequently and consistently, and decreasing the weight of connections that are

infrequent or inconsistent (the ‘‘fire together, wire together’’ principle). The reinforcement

of consistent coincidental activations leads to anticipated simulated perception in intermodal

perception nodes. For example, the sound of the word ‘‘tomato’’ can, with practice,

reinforce the visual concept of ‘‘red.’’ This, again, triggers top-down biasing of lower level

perception nodes, shortening reaction times as described above.

3.4. Application and evaluation

We have applied this framework on two distinct physical robotic platforms (Fig. 4)

designed to operate in synchrony with a human partner. Both robots were evaluated in

terms of their action fluency and reaction times with respect to the human’s behavior, using

repetitive practice. The first robot, Leonardo, is a complex expressive humanoid. We have
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demonstrated that—through repetition—the robot can reduce its reaction times in a play

interaction akin to the children’s game ‘‘Patty Cake.’’ The robot’s task was to mirror the

hand pattern of the human player facing it, as the human repeated an arbitrary sequence of

hand gestures multiple times.

In this application, we only use Markov-chain Bayesian anticipatory simulation to bias

the robot’s perceptual system. Before practice, the robot displayed a noticeable lag to the

human’s play pattern, but when top-down perception was sufficiently activated, the robot’s

movements were near simultaneous to those of the human player.

The second implementation used a nonhumanoid robot, AUR, a robotic desk lamp. In this

study, the human and the robot had to solve a joint task of moving around a space together

and selecting specific light colors for each area of the joint space. Again, the human led the

interaction and repeated the same patterns multiple times. For this setup, we used both

Markov-chain Bayesian and Hebbian reinforcement simulation.

In studies with untrained subjects, we showed our framework to be significantly more

efficient and fluent than in a comparable system without anticipatory perceptual simulation.

We also found significant differences between the two conditions in the human subjects’

sense of team fluency, the team’s improvement over time, the robot’s contribution to the

efficiency and fluency, the robot’s intelligence, and in the robot’s adaptation to the task. The

results of this study are reported in Hoffman and Breazeal (2010).

4. Discussion

We take EC to refer to a view according to which intelligence is not made up of abstract

symbols processed unidirectionally from perceptual processing modules to independent

motor devices, but instead that perception, cognition, and action are intertwined and operate

in a multidirectional and simultaneous manner.

Fig. 4. The robots used as physical platforms for the anticipatory perceptual simulation architecture. The expres-

sive humanoid Leonardo (left), and the nonhumanoid robotic desk lamp AUR (right).
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In recent years, EC research has been expanding to model and interpret an increasing

number of cognitive capabilities, including complex perceptual, communicational, and

social mechanisms. At the same time, most higher level cognitive functions modeled in

robotics revert to a traditional symbol-processing view, in which perception and action are

peripheral channels to amodal decision systems. This is particularly true for research in the

fields of personal and sociable robots, which engage in verbal and nonverbal discourse with

human partners.

In this article, we have proposed three ways in which EC could inspire novel paradigms

for autonomous interactive robotics. Specifically, we suggested (a) modal perceptual repre-

sentation, (b) action ⁄ perception and action ⁄ cognition integration, and (c) a simulation-based

model of top-down perceptual biasing, for EC-based cognitive robot architectures. We also

presented an anticipatory perceptual simulation framework exemplifying these principles,

and its application to two robotic platforms, used in interaction with untrained human

subjects.

Applying embodied cognition principles on any computational system is inherently a

challenge, as all computation is, at the lowest level, symbolic, abstract, and modular. That

said, one can view artificial intelligence and interactive robotics from a broader point of

view, creating ample opportunity to implement the core psychological and neuroscientific

findings of EC on robotic systems. And, as robots always act in a physical environment, it is

fitting to cease viewing their physical presence as a noisy filter over pseudoperfect informa-

tion. Instead, and especially when interacting with humans, robots should make use of their

embodiment, as the human brain does with its own physical circumstance.

Embodiment naturally found its first venue in robotics in the modeling of simple autono-

mous systems, and in the solution of specific mechanical and sensory dynamics problems.

This signaled a turn from the traditional concerns of AI: language, decision making,

planning, and rule learning. However, as EC research matures and begins to account for

elements of higher level cognition, autonomous robotics could benefit from a reevaluation

of embodiment in these contexts.

Some robotics researchers have begun to integrate embodiment principles in their work.

Gray and Breazeal’s work on simulation was mentioned above. Gorniak and Roy (2007)

have presented a computational theory of language understanding situated in a robot’s phys-

ical environment. Other robotics research has been concerned with the social-embodied idea

of physical behavior expressing internal states (Breazeal, 2002), and the social effects of

physical mimicry (Riek, Paul, & Robinson, 2009). In this article, we have suggested a per-

ceptual-simulation interpretation of EC applied to autonomous interactive robots.

However, still more of the recent cognitive and neuropsychological findings and models

could be applied to robotics, especially for robots that physically interact with untrained

humans. For example, commonsense reasoning—an important field of AI still making broad

use of amodal symbolic models (e.g., Havasi, Speer, Pustejovsky, & Lieberman, 2009; Liu

& Singh, 2004)—could make use of similar mechanisms humans use when reasoning about

the world using their embodied experience. Also, as computer games and digital entertain-

ment become more physically grounded, lessons from embodied practice in sports and per-

formance arts could be utilized to create more responsive and acceptable autonomous game
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agents and interfaces; one can even imagine a whole new field of ‘‘artificial practice’’

making use of the embodied techniques of performance artists and athletes. Similarly, EC

insights from master craftsmen might shed a new light on industrial robotics solving physi-

cal tasks; perhaps a new type of embodied human–robot apprenticeship might emerge.

Developmental EC could provide for novel paradigms in robotics aimed at childcare. And

similarly, perception–action integration could lead to more natural nonverbal interfaces for

nursing robots, and for those systems designed to assist the elderly in their homes.

The multitude of findings in EC, and its increasing reach, in parallel with the growing

embodiment of Artificial Intelligence and the greater sophistication of human-interactive

robotics, offer a fundamental opportunity for the adoption of EC models in artificial cogni-

tive systems in general, and in particular, in those for autonomous interactive robots.

Note

1. In the physical sense.

References

Aloimonos, Y. (Ed.). (1993). Active perception. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–660.

Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645.

Barsalou, L., Niedenthal, P., Barbey, A., & Rupert, J. (2003). Social embodiment. Psychology of Learning and
Motivation, 43, 43–92.

Breazeal, C. (2002). Designing sociable robots. Cambridge, MA: MIT Press.

Breazeal, C., Gray, J., & Berlin, M. (2009). An embodied cognition approach to mindreading skills for socially

intelligent robots. The International Journal of Robotics Research, 28 (5), 656–680.

Bregler, C. (1997). Learning and recognizing human dynamics in video sequences. In CVPR ‘97: Proceedings
of the 1997 Conference on Computer Vision and Pattern Recognition (p. 568). Washington, DC: IEEE

Computer Society.

Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47, 139–159.

Chandler, J., & Schwarz, N. (2009). How extending your middle finger affects your perception of others:

Learned movements influence concept accessibility. Journal of Experimental Social Psychology, 45 (1),

123–128.

Chiel, H. J., Ting, L. H., Ekeberg, O., & Hartmann, M. J. Z. (2009). The brain in its body: Motor control and

sensing in a biomechanical context. The Journal of Neuroscience: The Official Journal of the Society for
Neuroscience, 29 (41), 12807–12814.

Chovil, N. (1992). Discourse-oriented facial displays in conversation. Research on Language and Social Interac-
tion, 25, 163–194.

Collins, S., Ruina, A., Tedrake, R., & Wisse, M. (2005). Efficient bipedal robots based on passive-dynamic

walkers. Science (NY), 307 (5712), 1082–1085.

Damasio, A. R. (1989). Time-locked multiregional retroactivation: A systems-level proposal for the neural sub-

strates of recall and recognition. Cognition, 33, 25–62.

Edsinger, A., & Kemp, C. (2006). Manipulation in Human Environments. 2006 6th IEEE-RAS International
Conference on Humanoid Robots (pp. 102–109). Washington, DC: IEEE.

12 G. Hoffman ⁄ Topics in Cognitive Science (2012)



Fong, T., Nourbakhsh, I., & Dautenhahn, K. (2003). A survey of socially interactive robots. Robotics and Auton-
omous Systems, 42 (3–4), 143–166.

Gorniak, P., & Roy, D. (2007). Situated language understanding as filtering perceived affordances. Cognitive
Science, 31 (2), 197–231.

Gray, J., Breazeal, C., Berlin, M., Brooks, A., & Lieberman, J. (2005). Action parsing and goal inference using

self as simulator. In ROMAN 2005. IEEE International Workshop on Robot and Human Interactive Commu-

nication, 2005 (pp. 202–209). Washington, DC: IEEE).

Hamdan, R., Heitz, F., & Thoraval, L. (1999). Gesture localization and recognition using probabilistic visual

learning. In CVPR ‘99: Proceedings of the 1999 Conference on Computer Vision and Pattern Recognition
(pp. 2098–2103). Ft. Collins, CO.

Havasi, C., Speer, R., Pustejovsky, J., & Lieberman, H. (2009). Digital intuition: Applying common sense using

dimensionality reduction. IEEE Intelligent Systems, 24 (4), 24–35.

Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. New York: Wiley.

Hinds, P. J., Roberts, T. L., & Jones, H. (2004). Whose job is it anyway? A study of human-robot interaction in

a collaborative task. Human Computer Interaction, 19 (1&2), 151–181.

Hirose, S., & Mori, M. (2004). Biologically inspired snake-like robots. In 2004 IEEE International Conference
on Robotics and Biomimetics (pp. 1–7). Washington, DC: IEEE.

Hoffman, G., & Breazeal, C. (2004). Collaboration in human-robot teams. In Proceedings of the AIAA 1st Intel-
ligent Systems Technical Conference, Chicago, IL (pp. 1–18). Reston, VA: AIAA.

Hoffman, G., & Breazeal, C. (2007). Cost-based anticipatory action-selection for human-robot fluency. IEEE
Transactions on Robotics and Automation, 23 (5), 952–961.

Hoffman, G., & Breazeal, C. (2010). Effects of anticipatory perceptual simulation on practiced human-robot

tasks. Autonomous Robots, 28 (4), 403–423.

Kosslyn, S. M. (1995). Mental imagery. In Daniel N. Osherson, Stephen M. Kosslyn, & John M. Hollerbach

(Eds.), An invitation to cognitive science: Visual cognition and action (2nd ed., Vol. 2), pp. 73–97.

Cambridge, MA: MIT Press.

Krauss, R. M., Chen, Y., & Chawla, P. (1996). Nonverbal behavior and nonverbal communication: What do

conversational hand gestures tell us? In M. Zanna (Ed.), Advances in experimental social psychology
(pp. 389–450). San Diego, CA: Academic Press.

Kreiman, G., Koch, C., & Fried, I. (2000). Imagery neurons in the human brain. Nature, 408 (6810), 357–361.

Langton, C. G. (1995). Artificial life. Cambridge, MA: MIT Press.

Lee, S. W. S., & Schwarz, N. (2010). Dirty hands and dirty mouths: Embodiment of the moral-purity metaphor is

specific to the motor modality involved in moral transgression. Psychological Science, 21 (10), 1423–1425.

Liu, H., & Singh, P. (2004). Commonsense reasoning in and over natural language. In M. Negoita, R. Howlett,

& L. Jain (Eds.), Knowledge-based intelligent information and engineering systems (pp. 293–306). Berlin ⁄
Heidelberg: Springer.

Locke, J. L., & Kutz, K. J. (1975). Memory for speech and speech for memory. Journal of Speech and Hearing
Research, 18, 176–191.

Martin, A. (2001). Functional neuroimaging of semantic memory. In R. Cabeza & A. A. Kingstone (Eds.),

Handbook of functional neuroimaging of cognition, 1(3) (pp. 153–186). Cambridge, MA: MIT Press.

Massaro, D. W., & Cohen, M. M. (1983). Evaluation and integration of visual and auditory information in

speech perception. Journal of Experimental Psychology: Human Perception and Performance, 9 (5), 753–

771.

McClave, E. Z. (2000). Linguistic functions of head movements in the context of speech. Journal of Pragmatics,

32 (7), 855–878.

Miki, N., & Shimoyama, I. (1999). Study on micro-flying robots. Advanced Robotics, 13 (3), 245–246.

Pecher, D., & Zwaan, R. A. (2005). Grounding cognition: The role of perception and action in memory,
language, and thinking. Cambridge, England: Cambridge University Press.

Pfeifer, R., & Bongard, J. C. (2007). How the body shapes the way we think: A new view of intelligence.

Cambridge, MA: MIT Press.

G. Hoffman ⁄ Topics in Cognitive Science (2012) 13



Rickel, J., Lesh, N., Rich, C., Sidner, C. L., & Gertner, A. S. (2002). Collaborative discourse theory as a founda-

tion for tutorial dialogue. In Stefano A. Cerri, Guy Gouardères, & Fábio Paraguaçu, (Eds.), Proceedings of
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