
OpenWoZ: A Runtime-Configurable Wizard-of-Oz
Framework for Human-Robot Interaction

Guy Hoffman
Sibley School of

Mechanical and Aerospace Engineering
Cornell University

Ithaca, NY
hoffman@cornell.edu

Abstract

Wizard-of-Oz (WoZ) is a common technique
enabling HRI researchers to explore aspects
of interaction not yet backed by autonomous
systems. A standardized, open, and flexi-
ble WoZ framework could therefore serve the
community and accelerate research both for
the design of robotic systems and for their
evaluation.

This paper presents the definition of Open-
WoZ, a Wizard-of-Oz framework for HRI, de-
signed to be updated during operation by the
researcher controlling the robot. OpenWoZ
is implemented as a thin HTTP server run-
ning on the robot, and a cloud-backed multi-
platform client schema. The WoZ server ac-
cepts representational state transfer (REST)
requests from a number and variety of clients
simultaneously. This “separation of con-
cerns” in OpenWoZ allows addition of com-
mands, new sequencing of behaviors, and ad-
justment of parameters, all during run-time.

Introduction

Wizard of Oz (WoZ) is a common and important
technique in HRI and social robotics research (Riek
2012). It was originally developed by HCI re-
searchers as a method for researching interactive
systems before speech recognition or response gen-
eration systems were mature enough (Kelley 1983).
In HRI research WoZ is often used as part of
system development, and to evaluate interaction
paradigms in laboratory and field studies.

WoZ usually includes a control console which is
connected to the robot, but is out of sight for hu-
mans interacting with the robot. A researcher uses
the console to trigger behaviors that the robot ex-
ecutes.

Copyright c© 2016, Association for the Advancement
of Artificial Intelligence (www.aaai.org). All rights re-
served.

To date, most WoZ systems are custom-designed
and developed per robot, or even per specific ap-
plication or study (e.g., Villano et al. 2011; Kim et
al. 2012; Hoffman et al. 2014, and many more).

Given the prevalence of WoZ in HRI and social
robotics, and the common practice of developing
custom WoZ systems for each robotic platform, the
time is ripe for a community-standard framework
that can serve across research laboratories.

When designing such a framework, we note that
much of HRI research is conducted as a collab-
oration between technical and non-technical re-
searchers. These non-technical researchers include
social scientists and domain experts. We thus par-
ticularly identify a need for a WoZ framework that
is configurable in run-time by the person operating
the robot, without rebuilding the robot’s software.

In this paper, we present OpenWoZ, a new WoZ
architecture that is flexible with respect to the
robot’s capabilities, and is designed to be config-
urable without the need to recompile any of the
software components of the system. In fact, users
of the system can add capabilities and behaviors to
the robot, and UI elements to the control console
during run-time operation.

We describe the OpenWoZ design goals, the pro-
posed framework architecture, detailed elements
and data flow in the system, and a first implemen-
tation of the framework we developed to control a
newly constructed robot in our laboratory.

Need for Evaluator Configuration

Many HRI research laboratories engage in two in-
terleaved research activities: On the one hand, re-
searchers from disciplines such as Computer Sci-
ence and other Engineering fields develop robotic
systems. On the other hand, researchers conduct
human-subject studies evaluating these systems as
well as theoretical concepts surrounding HRI.

For simplicity, let us call these two research pop-
ulations “developers” and “evaluators”. Of course,

in many cases researchers act as both developers
and evaluators.

Evaluators sometimes come from a background
of Social Sciences, Psychology, or a specific applica-
tion field (elder care, child development, medicine,
etc.). They collaborate with developers on design-
ing and evaluating the robotic systems and inter-
action paradigms.

This leads to an inflexible situation, in which the
systems, including the WoZ components, need to
be fully defined and implemented before they can
be used by evaluators. In the common case where
pilot runs or field studies reveal necessary changes
to the robot’s behaviors, evaluators are reliant on
developers to add these capabilities to the robot.
This can cause significant delay in conducting the
evaluator’s research.

In fact, in most systems even tuning parameters
(e.g., gaze direction, gesture speed, on-screen text,
or text spoken by the robot) necessitates rebuilding
the software running on the robot, and is out of
reach for non-developer evaluators.

In designing a community-standard WoZ system,
we thus identify a need for a platform that is highly
configurable by evaluators, even if they do not have
any technical or programming skills.

OpenWoZ Design Goals
OpenWoZ is a flexible Wizard-of-Oz system we
have started to develop in our laboratory. When de-
signing OpenWoZ, we realized several design goals:

Generality
The system should not be designed around a spe-
cific robot morphology or behavior set, but be open-
ended to be useful for a number of different robots.

Sequencing and Simultaneous Execution
Our system should support the preset sequencing
and simultaneous execution of robot behaviors. For
example, we would like to trigger a motor gesture,
and play an audio file, either concurrently or with
some defined delay.

Evaluator Configuration
As described above, the system should be open
for evaluator configuration, including both setting
parameters of behaviors, and—ideally—adding be-
haviors to the robot, without having to reprogram
the robot.

For example, an evaluator should be able to add
an audio clip to the robot, and add a WoZ trig-
ger (e.g., a button on the WoZ panel) that plays
the audio clip. Similarly, the evaluator should be
able to sequence the playback of an audio clip with
custom text that appears on the screen.

Multi-client Architecture

Given the variety of experimental setups used in
HRI research labs, we want to enable a similar va-
riety of WoZ control clients.

Some applications require a large number of WoZ
commands, more appropriate for a desktop screen.
In some cases the hand-held nature of a smartphone
application is preferable, be it for reasons of discre-
tion or mobility. We thus want the system to be ag-
nostic to the particular client architecture control-
ling any particular robot (the “separation of con-
cerns” design principle). In addition, ideally more
than one WoZ operator could control the robot at
the same time.

Built-In Common Behaviors
While Wizard-of-Oz studies vary in their require-
ments, and different robots have different capabil-
ities, we identified a number of common behaviors
that appear across a variety of robots used for HRI
research. These behaviors should be implicitly sup-
ported by the OpenWoZ platform as built-in com-
ponents:

• Executing a Motor Sequence — The WoZ
system should enable the playback of a pre-
set motor sequence. We also would like to al-
low some variability in the playback of the se-
quence, including playback speed, amplitude,
and left/right mirroring.

• Audio Playback — The WoZ system should
allow the playback of audio files, usually voice
expression by the robot. It should also allow text-
to-speech output on the robot.

• Screen Display — The WoZ system should
allow the display of images and text on the screen
display of the robot, in case it has one. It should
allow free text display, including font size, and
positioning of the image.

In addition, the system architecture should be
designed to enable the addition of custom behav-
iors beyond the ones mentioned above, with the
optional setting of parameters for these custom be-
haviors.

Architecture
In this section we present the OpenWoZ architec-
ture. The different components of OpenWoZ and
their relationships can be found in Figure 1.

The system can be divided into three parts: (a)
The robot side, which includes the WoZ server, in-
terpreter, and resource files (blue elements on the
right side of Figure 1); (b) The evaluator side,
which includes the WoZ control clients (yellow ele-
ments on the top left of Figure 1); and (c) The cloud

2

Cloud DB

Events &
Sequences

Server Resource Folders

Motor Sequences

RESTful HTTP Server

Motor Sequences
play_sequence (name, speed,
amplitude, mirror)

Audio Clips
play_audio (name, volume)

Screen Display
show_image (name, x, y)
show_text (text, x, y, font)
clear ()

Custom Behaviors
name (params…)
name (params…)
name (params…)

Audio Clips

Image Files

Interpreter

Command +
Parameters

RobotClients

Client #1

Client #2

Init available Events and Sequences
Push updates / edits during run-time

Evaluators
HTTP GET
Requests
(REST)

Run-time
Configuration

DB Interface

Robot
Control

Upload Files

Event

trigger
label
command
params

name Sequence

time
event

time
event

. . .

name

trigger
label

Robot
Control

WoZ Interface

Cloud DB

WoZ Interface

Figure 1: The OpenWoZ Architecture: Evaluators control the robot through the WoZ interface on one of
a number of alternative clients (e.g., Native, HTML, Mobile, Speech); clients are initialized by the cloud-
backed database, which contains events and sequences, synchronized live to the clients during runtime;
clients translate events into REST URIs sent via HTTP GET requests to the robot server; the commands
and parameters are parsed by the server and passed to the interpreter, which uses files in the server’s resource
folders to generate robot behavior. Evaluators can configure the system at runtime by uploading files to the
server resource folders, and by editing events and sequences in the cloud database using the DB interface.

database, which includes the information backing
the WoZ clients (green elements on the bottom left
of Figure 1).1

On the highest level, the system operates as fol-
lows: The robot hosts a set of resource directo-
ries which define its standard behaviors, and has a
number of hard-coded custom behaviors. It runs
an HTTP server and a command interpreter which
triggers these behaviors. Clients are front-ends for
a push cloud database, which holds the various
behaviors the evaluator can trigger on the robot.
These front-end clients get updated whenever be-
haviors are added to the system, and send RESTful
GET requests to the robot HTTP server whenever
a trigger is activated.

Core Elements and Nomenclature

Before describing the system in detail, we want
to define the core elements and nomenclature at

1There is previous work suggesting a cloud-based
WoZ system (Sincak et al. 2015). However, in that
work, the cloud component of the WoZ system was
mainly concerned with hosting the client UI on the web.

the base of OpenWoZ. We will illustrate these con-
cepts through an imagined WoZ interaction, where
a WoZ evaluator causes the robot to wave its
hand at 50% speed and say “Hello” at full volume.
The speech commences 500ms after the hand wave
starts. Figure 2 illustrates these interrelated con-
cepts, using the same example interaction.

Event An Event is an atomic requested behavior
in the robot. It corresponds to the smallest building
block of robot behavior. In our example, an event
would be slow wave or say hello.

Sequence A Sequence is a list of events with time
codes associated with them. This enables the oper-
ator to activate a number of commonly co-occurring
events simultaneously or sequentially, without hav-
ing to manually schedule the events every time.
In our example, the sequence wave hello would
include two events: slow wave at time 0ms, and
say hello at time 500ms.

Trigger A Trigger causes an event or a sequence
to be sent to the robot. This corresponds to the
perceptual root of a behavior, which the WoZ sys-

3

move

Command

wave

Parameters
Voice: “Hi”

HI

Trigger

speed=.5

Request

/move/wave?speed=.5or

Event: slow_wave

User activates

causes

0

Time

slow_waveVoice: “Yo”

YO

Trigger

or

Sequence: wave_hello

User activates

Event

500 say_hello

Request

/move/wave?speed=.5causes

Request

/sound/hello?volume=1causes

(a)

(b)

after
500ms

Figure 2: The interrelation between the concepts and components in the OpenWoZ framework: The user
activates a trigger associated with an event (a) or a sequence (b). In an event, the commands and parameters
cause a request URI to be generated and sent to the server. In a sequence, the client generates one request
per sequence sub-event.

tem replaces. It could be a word that triggers that
event or sequence, or an external event (such as
the robot’s temperature rising beyond a threshold)
which the WoZ operator enacts. In a button-based
interface, each button corresponds to one trigger.
In our example (Figure 2), we associate detecting
the word “yo” or a button labeled “Yo” with trig-
gering the sequence wave hello.

Command A Command is the internal name a
single action the robot can execute. It comes with
optional parameters. In the example, a command
could be sound or move.

Request Finally, a Request is the communication
message sent from WoZ clients to the robot server,
including a command along with its parameters.
Our example would cause two requests, one for the
gesture (/move/wave?speed=.5), and one for the
audio file (/sound/hello?volume=1).

HTTP Server

On the robot side, OpenWoZ runs as an HTTP
server accepting requests from a multitude of
clients. It parses the requests into the underlying
commands and parameters and sends these to the
OpenWoz Interpreter, which uses them to cause the
various robot behaviors.

The Representational State Transfer or “REST”
interface (Fielding 2000) is a commonplace soft-
ware architecture that was designed to access online
resources easily and efficiently, providing flexibil-
ity and human-readability. It is laid over HTTP
requests and uses Uniform Resource Identifiers

(URIs) to manipulate information on the server.
An OpenWoz client can access a number of com-

monly used server resources: motors, speakers and
screens. We translate this into three matching
REST resources: move, sound, and display. De-
velopers can of course add additional resources as
needed based on any particular robot’s capabilities.

move This resource causes playback of a motor
sequence with optional parameters. When this re-
quest is received, the Interpreter looks in the motor
sequence resource folder for a motor sequence file
of the name specified in the URI.

The file is formatted in JSON, specifying the
frames of motor positions to be sent to each mo-
tor, and their timing. The sequence is then played
back on the robot, using optional parameters.
The sequence can be time stretched based on the
speed factor, it can be diminished or exaggerated
based on the amplitude factor, and it can be mir-
rored by multiplying the motor commands for axis-
symmetric motors by −1.

For example, to play back the motor sequence
found in the resource file wave.json at half speed,
the REST URI would be /move/wave?speed=0.5.

sound This resource causes the robot to play back
a sound with optional parameters, either from a file
or from text-to-speech. When an audio file request
is received, the Interpreter looks in the audio clip
resource folder for an audio file of the name speci-
fied in the URI, with an optional volume.

For example, to play back the audio file say-
ing “Hello” found in the resource file hello.wav

4

at full volume, the REST URI would be
/sound/file/hello?volume=1. Similarly, to trig-
ger text-to-speech of the phrase “Hello there”, the
URI would be /sound/text/hello%20there

display This resource causes the robot to display
an image or text with optional parameters. When
an image request is received, the Interpreter looks
in the image resource folder for an image file of the
name specified in the URI, with an optional x and y
position, and scale. Similarly, the request can dis-
play text on the screen by specifying the text string,
with optional x, y, and fontsize parameters.

An example of an image display URI would be in
the form of /display/image/frog.png?scale=2,
and an example of a text display URI would be
/display/text/hello%20world?fontsize=20.

Finally, the RESTful nature of the server sup-
ports custom actions that can be tailored to each
robot separately by defining additional REST re-
sources.

Cloud Database

The cloud database (DB) is the back-end defining
the functionalities of a specific robot or WoZ in-
teraction. We chose this design to separate the re-
quests clients can send to the robot server from the
actual client code. In fact, client applications do
not know anything about the server’s capabilities,
and rely on the cloud DB to provide them with the
command space they can use.

The DB contains two types of data, as defined
above: Events and Sequences. Event elements con-
tain four fields, in addition to their name: a trigger
for the event, an optional human-readable label, the
command that needs to be executed and optional
parameters.

Sequence elements have a name, a trigger, and a
list of pairs, each pair containing a time, relative to
the beginning of the sequence, and an event. If two
consecutive events have the same time code, they
are triggered simultaneously.

The database is globally shared with all the
clients. Also, the DB functions as a “push” service:
Any time the database is updated by the evaluator,
all the clients associated with that database reflect
the update instantly during runtime.

Client

OpenWoZ clients are designed to be lightweight and
span a variety of platforms based on the research
needs. There is no single client for OpenWoZ, but
instead a specification of three behaviors a client
needs to support as part of the framework.

Initialization from Cloud DB First, clients
initialize by querying the cloud database and load-
ing the set of available events and event sequences.
These are then displayed to the user by their op-
tional label or, in the case of no label, by the event
or sequence name.

Runtime Push Update Clients should respond
to push updates from the cloud database. These
can include the insertion, deletion, or modification
of an event or event sequence. When a push up-
date happens, this should be reflected in the UI
by adding, removing, or updating the interface ele-
ment connected to this event or sequence.

REST Request Generation Finally, clients
should generate one or more REST request URIs
based on the commands and parameters associated
with the triggers activated by the evaluator, and in
accordance with the server’s defined resources.

Runtime Configuration Example

Evaluators can add behaviors to the system
during run-time, without recompiling—or even
restarting—the client or the server.

For example, to add a new motion sequence with
an associated sound, an evaluator creates a new
motion sequence JSON file. To allow easy genera-
tion of these files, we have developed an OpenWoZ
exporter for the open-source 3D animation software
Blender. The exporter converts Blender animations
into the JSON file format expected by the inter-
preter for playback. Alternatively, evaluators can
edit existing motion sequence JSON files, or create
new sequence files manually.

The evaluator then uploads the JSON file with
the appropriate name (e.g., a bowing sequence
called bow.json) into the motion sequence resource
directory on the server. Similarly, the evaluator can
upload an audio file to the audio clips resource di-
rectory on the server (e.g., a voice clip saying “Nice
to meet you” as nice2meet.wav).

To add the new behavior, the evaluator adds a
new event for the motion sequence, using the move
command and the name of the JSON file. She also
adds a new event using the sound command for the
audio clip. Finally, the evaluator creates a sequence
entry in the database that includes both events at
time 0, and gives it a label “Greet”.

All of the OpenWoz clients automatically up-
date to reflect these new events and sequence,
and now show a new button labeled “Greet”,
which will simultaneously send two HTTP GET
requests to the server, with URIs /move/bow and
/sound/nice2meet.

5

(a) (b)

Figure 3: Mobile (a) and Dynamic HTML (b) OpenWoZ clients. A mouse hover in the HTML client shows
the RESTful URI sent by the client to the HTTP Server.

Implementation
We have implemented a first version of the Open-
WoZ framework and used it successfully to control
a newly constructed robot with five motors, a dis-
play embedded in the robot’s head, and a speaker
for voice output.

The server was custom-written in Java and runs
on a Raspberry Pi-2 Model B controlling the robot.
To illustrate the flexibility on the client side, we
implemented three clients: (a) an Android smart-
phone application (Figure 3a); (b) a Dynamic
HTML page, which also displays the REST re-
quest when the mouse hovers over one of the but-
tons (Figure 3b); and (c) a voice-recognizing client,
which uses Google Voice Search for text-to-speech,
and scans the resulting phrase for trigger keywords
associated with the event or sequence. The current
implementation of OpenWoz uses FireBase as the
cloud database, a fast and easy-to-configure cloud
database with push support and a wide range of
client APIs.

Conclusion and Future Work
We described a new framework for an HTTP
server based Wizard-of-Oz system, OpenWoZ. The
framework is designed using the “separation of
concerns” principle, and uses lightweight multi-
platform clients backed by a push cloud database.
We also report on a first implementation of this
framework, which we use to control a new robot
in our laboratory. This is work in progress, and
we are currently working on ways to improve the
framework and system, in several ways:

First, we would like to allow the robot server to
load custom actions as Python scripts, which can
be loaded during run-time. This would allow for

run-time addition and editing of behaviors beyond
the three standard behaviors described above.

Right now, evaluators have to add and edit en-
tries in the database to add events and sequences.
This might still be an entry barrier for researchers.
We would like to develop a better interface to
add triggers. Perhaps it makes sense to develop a
graphical behavior programming language, similar
to Scratch (Resnick et al. 2009).

It might make sense to be able to structure se-
quences directly as command-parameter arrays, in-
stead of indirectly linking them to events. Alterna-
tively, both approaches could be combined in the
sequence data structure.

Finally, we would like to more seamlessly connect
new server capabilities with the information in the
cloud database. Currently, the server and database
are not connected, requiring modification of both
when adding a new behavior. Ideally there can be
an automatic way to reflect new server capabilities
(i.e., newly uploaded resource files) in the database.

In conclusion, as Wizard of Oz is becoming an
increasingly important technique for both the de-
velopment and evaluation of Human-Robot Inter-
action, the research community can benefit from
an open, flexible, and generalized framework for
WoZ software. The OpenWoZ framework described
herein provides such a framework with the addi-
tional benefit of allowing evaluators to configure
and edit the WoZ capabilities during runtime, with-
out necessitating rebuilding the underlying soft-
ware.

6

References
Fielding, R. 2000. The representational state trans-
fer (REST). Ph.D. Dissertation, University of
California, Irvine.

Hoffman, G.; Birnbaum, G. E.; Vanunu, K.; Sass,
O.; and Reis, H. T. 2014. Robot responsiveness
to human disclosure affects social impression and
appeal. In Proceedings of the 2014 ACM/IEEE
international conference on Human-robot inter-
action, 1–8. ACM.

Kelley, J. F. 1983. An empirical methodology for
writing user-friendly natural language computer
applications. In Proceedings of the SIGCHI con-
ference on Human Factors in Computing Sys-
tems, 193–196. ACM.

Kim, E. S.; Paul, R.; Shic, F.; and Scassellati,
B. 2012. Bridging the research gap: Making
hri useful to individuals with autism. Journal of
Human-Robot Interaction 1(1).

Resnick, M.; Maloney, J.; Monroy-Hernández, A.;

Rusk, N.; Eastmond, E.; Brennan, K.; Millner,
A.; Rosenbaum, E.; Silver, J.; Silverman, B.;
et al. 2009. Scratch: programming for all. Com-
munications of the ACM 52(11):60–67.

Riek, L. D. 2012. Wizard of Oz studies in HRI: a
systematic review and new reporting guidelines.
Journal of Human-Robot Interaction 1(1).

Sincak, P.; Novotna, E.; Cadrik, T.; Magyar,
G.; Mach, M.; Cavallo, F.; and Bonaccorsi, M.
2015. Cloud-based wizard of oz as a service.
In Intelligent Engineering Systems (INES), 2015
IEEE 19th International Conference on, 445–
448. IEEE.

Villano, M.; Crowell, C. R.; Wier, K.; Tang, K.;
Thomas, B.; Shea, N.; Schmitt, L. M.; and Diehl,
J. J. 2011. DOMER: a Wizard of Oz interface
for using interactive robots to scaffold social skills
for children with autism spectrum disorders. In
Proceedings of the 6th international conference
on Human-robot interaction, 279–280. ACM.

7

	Introduction
	Need for Evaluator Configuration
	OpenWoZ Design Goals
	Generality
	Sequencing and Simultaneous Execution
	Evaluator Configuration
	Multi-client Architecture

	Built-In Common Behaviors
	Architecture
	Core Elements and Nomenclature
	HTTP Server
	Cloud Database
	Client

	Runtime Configuration Example
	Implementation
	Conclusion and Future Work

